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Abstract— The extended Berkley packet filter (eBPF) is a novel 

technology that allows portions of code to be dynamically 

loaded into the Linux kernel. Because it allows the kernel to 

process some packets without the intervention of a userspace 

programme, it can considerably speed up networking. eBPF 

has so far been utilised for simple packet filtering applications 

like firewalls and DDoS defence. We show that a flow-based 

network intrusion detection system based on machine learning 

may be developed entirely in eBPF. Our method employs a 

decision tree to determine if a packet is malicious or not, taking 

into account the complete preceding context of the network 

flow. When compared to the same solution implemented as a 

userspace programme, a speed boost of over 19% has been 

achieved. 
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I. INTRODUCTION 

A. Extended Berkeley Packet Filter 

The Extended Berkeley Packet Filter (eBPF) is a Linux 

kernel instruction set and execution environment. It allows 

for runtime change, interactivity, and kernel 

programmability. The eXpress Data Path (XDP), a kernel 

network layer that processes packets closer to the NIC for 

faster packet processing, can be programmed using eBPF. 

Developers can develop programmes in C or P4 and then 

compile them to eBPF instructions, which the kernel or 

programmable devices can handle (e.g., SmartNICs). eBPF 

has been quickly embraced by big firms such as Facebook, 

Cloudflare, and Netronome since its launch in 2014. 

Network monitoring, network traffic manipulation, load 

balancing, and system profiling are examples of use cases. 

eBPF may be dynamically injected during runtime and is 

well tested to ensure that it does not crash or get stuck in 

infinite loops. However, this verification is only viable for 

non-turing complete programmes. As a result, eBPF 

programmes cannot have loops of any length; instead, loops 

must always have a maximum number of iterations. 

Backward leaps in the code are also often prohibited. As a 

result, eBPF can only be used to implement algorithms that 

aren't turing-complete. The majority of eBPF programmes 

are written in C and then compiled to eBPF bytecode. This 

eBPF bytecode is dynamically compiled to native code after 

being injected into the kernel. 

eBPF is particularly well suited to packet processing: 

Certain actions, such as discarding a packet, can be 

performed when it arrives at a network interface. This is 

useful for applications that record packets according to 

specified criteria, such as firewalls  or tcpdump. If only 

packets from port 80 are to be recorded, for example, 

tcpdump will construct an eBPF programme that encodes 

this and loads it into the kernel [1]. All packets that do not 

meet the filter will be dropped by the kernel, and only the 

correct ones will be sent to tcpdump. Alternatively, tcpdump 

may receive all packets and filter them on its own. The 

disadvantage is that each packet must then be handed from 

the kernel to tcpdump, which requires transferring the entire 

packet into memory as well as additional computing steps. 

As a result, whenever possible, passing packets between the 

kernel and programmes should be avoided for performance 

reasons. This is possible using eBPF only.  

Because the eBPF bytecode is compiled to native code, it 

should run as quickly as any other kernel code. However, 

because eBPF is verified, it can only use a limited number of 

data structures. Normal C arrays, for example, cannot be 

used in an eBPF programme because they allow outof-

bounds accesses. For example, even though an array of 

length 10 only has 10 elements, C would give access to the 

15th element. As a result, eBPF programmes make 

advantage of secure data structures. However, because 

checking the boundaries of an array each time it is accessed 

necessitates more CPU effort, this could result in a 

performance cost. 

Kernel modules are an alternative to using eBPF. Kernel 

modules, on the other hand, have the disadvantage of not 

being able to be tested for reliability and having to be 

compiled for a certain kernel version. Furthermore, 

designing kernel modules is not easy, and it is frequently 

impossible to enhance particular kernel capabilities with a 

kernel module without modifying the kernel itself. Changing 

the kernel as a whole necessitates recompiling the kernel , 

which is inconvenient. 

B. Machine Learning for IDS:  

Artificial neural networks (ANN), support vector 

machines (SVM), K-nearest neighbour (KNN), nave Bayes, 

logistic regression (LR), decision trees, clustering, and 

mixed and hybrid approaches are among the conventional 

machine learning models (shallow models) for IDS. Some of 

these solutions have been studied for decades and have a 

well-developed methodology. They are concerned not only 

with the detection effect, but also with practical issues such 

as detection efficiency and data administration.  As per 

previous work in this field following given algorithm of 

machine learning and respective improvement in algorithms 

has been raised in Table 1. 

Table 1: Machine learning Algorithms for IDS 

Algorithms Advantages Improvement 

Measures 

ANN Can work Non- 

Linear Data, more 

fitting ability 

Optimizers, 

Activation Function, 

Loss Function 
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KNN Quick Training, 

Noise robustness, 

Massive data 

handling  

PSO (Particle 

Swarm 

Optimization), 

SMOTE 

SVM Generation 

Capability, Can 

work well on small 

Dataset  

PSO 

Naïve Bayes Noise robustness, 

incremental 

learning  

Can import latent 

variable  

Decision 

Tree 

Auto feature 

selection, strong 

interpretation  

Balanced Dataset , 

Introducing latent 

variables  

K - Means Rapid training, 

scalability, big data 

can fit.  

Initialization method 

 

Some researchers have already looked into eBPF-based 

IDSs or considered applying machine learning in eBPF. 

Propose that eBPF be used to discover performance 

problems using AI. They do, however, merely present a 

concept and do not evaluate the benefit of their technique, 

and they also employ eBPF to build solutions for preventing 

Denial-of-Service assaults. They don't employ machine 

learning.  

The fact that eBPF is not turing complete is one of the 

drawbacks of utilising it for machine learning. ML 

techniques, such as decision trees (DTs) and neural networks 

(NNs), on the other hand, do not require loops in their 

implementation and hence do not require turing-

completeness, and thus can be implemented in eBPF. 

Because tree-based approaches are a simple and effective 

ML method for IDSs , we chose to employ DTs. As 

discussed in the preceding sections, eBPF data structures 

require more processing than standard C data structures [8]. 

As a result, we'd like to answer the following question in this 

study: Is eBPF faster than a solution implemented as a 

regular userspace programme? The disadvantage of a 

userspace programme is that all packets must be transmitted 

between the kernel and the programme, which is slow. The 

downside of the eBPF programme is that it uses potentially 

slower data structures [3]. As a result, it'll be fascinating to 

see if eBPF can be faster in reality, even for complicated 

algorithms that regularly use data structures.  

II. METHOD AND EVALUATION PATH 

We imagine a method that maintains track of each 

network flow and analyses each packet in relation to the 

flow's prior packets. Certain assaults, for example, may not 

be noticed until the fourth packet of the network flow 

containing the attack arrives. We employ eBPF's built-in 

hash tables for this purpose, which allow us to store 

information for each flow. The conventional five tuple of 

protocol type, source and destination IP, and source and 

destination port is used as the key.  A general idea of 

proposed method of cleaning program has been given in 

figure 1 using eBPF user program and kernel.  

 

 

 

Figure 1: eBPF filter user and kernel 

Because these features have proven useful for network 

traffic analysis, we use the source and destination ports, the 

protocol identifier (UDP, TCP, ICMP, etc. ), the packet 

length, the time since the last packet of the flow, and the 

packet direction (from sender to receiver or vice versa) as 

features. We also give the average packet size, the duration 

since the last packet, and the direction for all packets 

received thus far in the flow. Because the standard deviation 

cannot be estimated in eBPF due to the lack of sophisticated 

arithmetic operations such as the square root operation, the 

mean absolute deviation is computed for these three features 

as well. The fact that eBPF only supports integers rather than 

floating point operations is a concern. The eBPF program 

execution is safe and using filter, optimal working using less 

data set is more efficient under learning environment. 

The popular CIC-IDS-2017 dataset is used. We use 

scikit-learn to train the decision tree with a maximum depth 

of 10 and a maximum number of leaves of 1100, with a 

train/test split of 70:30 ratio, and it achieves a 97.78 percent 

accuracy on the testing dataset after training. This precision 

is equivalent to that attained in related research [4]. 

We make all of the source code and other materials 

from this work openly available to facilitate replication and 

encourage future exploration by other researchers. We 

employ the previously trained DT and implement the same 

IDS in both userspace and eBPF. The code is identical 

except for the data structures, which are different since, as 

previously stated, many standard data structures are not 

useable in eBPF. Furthermore, several data structures in 

eBPF, such as hash maps, are not available by default in a 

standard C userspace programme [1], thus the userspace 

version uses a rudimentary hash map implementation from 

the Linux kernel. 

We use Linux network name spaces to simulate a 

network.For this, we'll use a switch to connect a server and a 

client, and we'll set the links to have no delay in addition to 

the delay generated by the Linux kernel when forwarding 

packets. In addition, we set the maximum link speed to 

infinity. iPerf is used to connect the server and the client. 

iPerf will run as quickly as feasible because the network 

speed is unrestricted. The greatest speed is simply limited by 

the computer's ability to process packets quickly. The IDS is 

installed by opening a raw socket on the server's network 

interface. As a result, all packets passing through the server 

are routed through the raw. The IDS decodes the socket and 

processes it. The IDS can be implemented as a traditional 

userspace application or through the use of eBPF, and they 

all operate in parallel (not at the same time). Both 

implementations are run for a total of 10 seconds. Instead of 

installing the IDS on a client computer, it can be installed on 

a router or switch that runs a recent Linux version and can 

thus run eBPF. 
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Table 2 Packets per implementation (Max over 10 

run each) 

 

packets/s 

Userspace eBPF 

Mean SD Mean SD 

125 320 2527 152 174 1191 

 

The userspace implementation inspects less packets per 

second (125320) than the eBPF implementation, as shown in 

Table 2. (152174). As a result, the eBPF implementation is 

more than 19% faster than the userspace counterpart. 

III. DISCUSSION 

An interesting thing to ponder is that for complicated 

ML models, the expense of employing eBPF's specific data 

structures eventually outweighs the value that eBPF 

provides. Future research could, for example, look into 

whether random forests (RFs) or deep neural networks 

(NNs) can likewise obtain a performance advantage when 

used in eBPF. However, we were able to demonstrate that 

for a simple decision tree model, eBPF delivers a 

considerable performance benefit in this study. The work 

can be extended with muti aspect streams where each record 

in constant time and constant memory is required. Again 

main focus may be expected on feature selection on dataset 

where optimal retrieval techniques using cascading 

techniques can be used.   

REFERENCES 

[1] SF. Risso and M. Tumolo, “Towards a faster Iptables in eBPF,” 

2018.. 

[2] I. Ben-Yair, P. Rogovoy, and N. Zaidenberg, “AI & eBPF based 

performance anomaly detection system,” in SYSTOR, ACM, May 

2019. 
[3] H. M. Demoulin, I. Pedisich, N. Vasilakis, V. Liu, B. T. Loo, and L. 

T. X. Phan, “Detecting Asymmetric Application-layer Denialof-

Service Attacks In-Flight with FineLame,” USENIX, 2019. 

[4] H. van Wieren, “Signature-Based DDoS Attack Mitigation: 

Automated Generating Rules for Extended Berkeley Packet Filter 

and Express Data Path,” 2019. 

[5] Y. Choe, J.-S. Shin, S. Lee, and J. Kim, “eBPF/XDP Based Network 

Traffic Visualization and DoS Mitigation for Intelligent Service 

Protection,” in Advances in Internet, Data and Web Technologies, 

Springer, 2020. 

[6] F. Iglesias, D. C. Ferreira, G. Vormayr, M. Bachl, and T. Zseby, 

“NTARC: A Data Model for the Systematic Review of Network 

Traffic Analysis Research,” Applied Sciences, Jan. 2020. 

[7] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward 

Generating a New Intrusion Detection Dataset and Intrusion Traffic 

Characterization,” in ICISSP, SCITEPRESS, 2018. 

[8]  A. Hartl, M. Bachl, J. Fabini, and T. Zseby, “Explainability and 

Adversarial Robustness for RNNs,” in BigDataService 2020, IEEE, 

Apr.2020. 


