
International Journal of Engineering Research in Current Trends (IJERCT)

ISSN: 2582-5488, Volume-3 Issue-5, October 2021

5

Machine Leaning for Flow Based Intrusion

Detection Using Extended Berkley Packet Filter

Pratap Singh Pradhan

School of Computer Science and Technology, LNCT

University, Bhopal, pspspsingh@gmail.com

Dr Praveen Kumar Mannepalli

School of Computer Science and Technology, LNCT

University, Bhopal, praveen.hawassa@gmail.com

Abstract— The extended Berkley packet filter (eBPF) is a novel

technology that allows portions of code to be dynamically

loaded into the Linux kernel. Because it allows the kernel to

process some packets without the intervention of a userspace

programme, it can considerably speed up networking. eBPF

has so far been utilised for simple packet filtering applications

like firewalls and DDoS defence. We show that a flow-based

network intrusion detection system based on machine learning

may be developed entirely in eBPF. Our method employs a

decision tree to determine if a packet is malicious or not, taking

into account the complete preceding context of the network

flow. When compared to the same solution implemented as a

userspace programme, a speed boost of over 19% has been

achieved.

Keywords— eBPF, Firewall, Decision tree, DDoS, Packet

I. INTRODUCTION

A. Extended Berkeley Packet Filter

The Extended Berkeley Packet Filter (eBPF) is a Linux

kernel instruction set and execution environment. It allows

for runtime change, interactivity, and kernel

programmability. The eXpress Data Path (XDP), a kernel

network layer that processes packets closer to the NIC for

faster packet processing, can be programmed using eBPF.

Developers can develop programmes in C or P4 and then

compile them to eBPF instructions, which the kernel or

programmable devices can handle (e.g., SmartNICs). eBPF

has been quickly embraced by big firms such as Facebook,

Cloudflare, and Netronome since its launch in 2014.

Network monitoring, network traffic manipulation, load

balancing, and system profiling are examples of use cases.

eBPF may be dynamically injected during runtime and is

well tested to ensure that it does not crash or get stuck in

infinite loops. However, this verification is only viable for

non-turing complete programmes. As a result, eBPF

programmes cannot have loops of any length; instead, loops

must always have a maximum number of iterations.

Backward leaps in the code are also often prohibited. As a

result, eBPF can only be used to implement algorithms that

aren't turing-complete. The majority of eBPF programmes

are written in C and then compiled to eBPF bytecode. This

eBPF bytecode is dynamically compiled to native code after

being injected into the kernel.

eBPF is particularly well suited to packet processing:

Certain actions, such as discarding a packet, can be

performed when it arrives at a network interface. This is

useful for applications that record packets according to

specified criteria, such as firewalls or tcpdump. If only

packets from port 80 are to be recorded, for example,

tcpdump will construct an eBPF programme that encodes

this and loads it into the kernel [1]. All packets that do not

meet the filter will be dropped by the kernel, and only the

correct ones will be sent to tcpdump. Alternatively, tcpdump

may receive all packets and filter them on its own. The

disadvantage is that each packet must then be handed from

the kernel to tcpdump, which requires transferring the entire

packet into memory as well as additional computing steps.

As a result, whenever possible, passing packets between the

kernel and programmes should be avoided for performance

reasons. This is possible using eBPF only.

Because the eBPF bytecode is compiled to native code, it

should run as quickly as any other kernel code. However,

because eBPF is verified, it can only use a limited number of

data structures. Normal C arrays, for example, cannot be

used in an eBPF programme because they allow outof-

bounds accesses. For example, even though an array of

length 10 only has 10 elements, C would give access to the

15th element. As a result, eBPF programmes make

advantage of secure data structures. However, because

checking the boundaries of an array each time it is accessed

necessitates more CPU effort, this could result in a

performance cost.

Kernel modules are an alternative to using eBPF. Kernel

modules, on the other hand, have the disadvantage of not

being able to be tested for reliability and having to be

compiled for a certain kernel version. Furthermore,

designing kernel modules is not easy, and it is frequently

impossible to enhance particular kernel capabilities with a

kernel module without modifying the kernel itself. Changing

the kernel as a whole necessitates recompiling the kernel ,

which is inconvenient.

B. Machine Learning for IDS:

Artificial neural networks (ANN), support vector

machines (SVM), K-nearest neighbour (KNN), nave Bayes,

logistic regression (LR), decision trees, clustering, and

mixed and hybrid approaches are among the conventional

machine learning models (shallow models) for IDS. Some of

these solutions have been studied for decades and have a

well-developed methodology. They are concerned not only

with the detection effect, but also with practical issues such

as detection efficiency and data administration. As per

previous work in this field following given algorithm of

machine learning and respective improvement in algorithms

has been raised in Table 1.

Table 1: Machine learning Algorithms for IDS

Algorithms Advantages Improvement

Measures

ANN Can work Non-

Linear Data, more

fitting ability

Optimizers,

Activation Function,

Loss Function

Machine Leaning for Flow Based Intrusion Detection Using Extended Berkley Packet Filter

6

KNN Quick Training,

Noise robustness,

Massive data

handling

PSO (Particle

Swarm

Optimization),

SMOTE

SVM Generation

Capability, Can

work well on small

Dataset

PSO

Naïve Bayes Noise robustness,

incremental

learning

Can import latent

variable

Decision

Tree

Auto feature

selection, strong

interpretation

Balanced Dataset ,

Introducing latent

variables

K - Means Rapid training,

scalability, big data

can fit.

Initialization method

Some researchers have already looked into eBPF-based

IDSs or considered applying machine learning in eBPF.

Propose that eBPF be used to discover performance

problems using AI. They do, however, merely present a

concept and do not evaluate the benefit of their technique,

and they also employ eBPF to build solutions for preventing

Denial-of-Service assaults. They don't employ machine

learning.

The fact that eBPF is not turing complete is one of the

drawbacks of utilising it for machine learning. ML

techniques, such as decision trees (DTs) and neural networks

(NNs), on the other hand, do not require loops in their

implementation and hence do not require turing-

completeness, and thus can be implemented in eBPF.

Because tree-based approaches are a simple and effective

ML method for IDSs , we chose to employ DTs. As

discussed in the preceding sections, eBPF data structures

require more processing than standard C data structures [8].

As a result, we'd like to answer the following question in this

study: Is eBPF faster than a solution implemented as a

regular userspace programme? The disadvantage of a

userspace programme is that all packets must be transmitted

between the kernel and the programme, which is slow. The

downside of the eBPF programme is that it uses potentially

slower data structures [3]. As a result, it'll be fascinating to

see if eBPF can be faster in reality, even for complicated

algorithms that regularly use data structures.

II. METHOD AND EVALUATION PATH

We imagine a method that maintains track of each

network flow and analyses each packet in relation to the

flow's prior packets. Certain assaults, for example, may not

be noticed until the fourth packet of the network flow

containing the attack arrives. We employ eBPF's built-in

hash tables for this purpose, which allow us to store

information for each flow. The conventional five tuple of

protocol type, source and destination IP, and source and

destination port is used as the key. A general idea of

proposed method of cleaning program has been given in

figure 1 using eBPF user program and kernel.

Figure 1: eBPF filter user and kernel

Because these features have proven useful for network

traffic analysis, we use the source and destination ports, the

protocol identifier (UDP, TCP, ICMP, etc.), the packet

length, the time since the last packet of the flow, and the

packet direction (from sender to receiver or vice versa) as

features. We also give the average packet size, the duration

since the last packet, and the direction for all packets

received thus far in the flow. Because the standard deviation

cannot be estimated in eBPF due to the lack of sophisticated

arithmetic operations such as the square root operation, the

mean absolute deviation is computed for these three features

as well. The fact that eBPF only supports integers rather than

floating point operations is a concern. The eBPF program

execution is safe and using filter, optimal working using less

data set is more efficient under learning environment.

The popular CIC-IDS-2017 dataset is used. We use

scikit-learn to train the decision tree with a maximum depth

of 10 and a maximum number of leaves of 1100, with a

train/test split of 70:30 ratio, and it achieves a 97.78 percent

accuracy on the testing dataset after training. This precision

is equivalent to that attained in related research [4].

We make all of the source code and other materials

from this work openly available to facilitate replication and

encourage future exploration by other researchers. We

employ the previously trained DT and implement the same

IDS in both userspace and eBPF. The code is identical

except for the data structures, which are different since, as

previously stated, many standard data structures are not

useable in eBPF. Furthermore, several data structures in

eBPF, such as hash maps, are not available by default in a

standard C userspace programme [1], thus the userspace

version uses a rudimentary hash map implementation from

the Linux kernel.

We use Linux network name spaces to simulate a

network.For this, we'll use a switch to connect a server and a

client, and we'll set the links to have no delay in addition to

the delay generated by the Linux kernel when forwarding

packets. In addition, we set the maximum link speed to

infinity. iPerf is used to connect the server and the client.

iPerf will run as quickly as feasible because the network

speed is unrestricted. The greatest speed is simply limited by

the computer's ability to process packets quickly. The IDS is

installed by opening a raw socket on the server's network

interface. As a result, all packets passing through the server

are routed through the raw. The IDS decodes the socket and

processes it. The IDS can be implemented as a traditional

userspace application or through the use of eBPF, and they

all operate in parallel (not at the same time). Both

implementations are run for a total of 10 seconds. Instead of

installing the IDS on a client computer, it can be installed on

a router or switch that runs a recent Linux version and can

thus run eBPF.

International Journal of Engineering Research in Current Trends (IJERCT)

ISSN: 2582-5488, Volume-3 Issue-5, October 2021

7

Table 2 Packets per implementation (Max over 10

run each)

packets/s

Userspace eBPF

Mean SD Mean SD

125 320 2527 152 174 1191

The userspace implementation inspects less packets per

second (125320) than the eBPF implementation, as shown in

Table 2. (152174). As a result, the eBPF implementation is

more than 19% faster than the userspace counterpart.

III. DISCUSSION

An interesting thing to ponder is that for complicated

ML models, the expense of employing eBPF's specific data

structures eventually outweighs the value that eBPF

provides. Future research could, for example, look into

whether random forests (RFs) or deep neural networks

(NNs) can likewise obtain a performance advantage when

used in eBPF. However, we were able to demonstrate that

for a simple decision tree model, eBPF delivers a

considerable performance benefit in this study. The work

can be extended with muti aspect streams where each record

in constant time and constant memory is required. Again

main focus may be expected on feature selection on dataset

where optimal retrieval techniques using cascading

techniques can be used.

REFERENCES

[1] SF. Risso and M. Tumolo, “Towards a faster Iptables in eBPF,”

2018..

[2] I. Ben-Yair, P. Rogovoy, and N. Zaidenberg, “AI & eBPF based

performance anomaly detection system,” in SYSTOR, ACM, May

2019.
[3] H. M. Demoulin, I. Pedisich, N. Vasilakis, V. Liu, B. T. Loo, and L.

T. X. Phan, “Detecting Asymmetric Application-layer Denialof-

Service Attacks In-Flight with FineLame,” USENIX, 2019.

[4] H. van Wieren, “Signature-Based DDoS Attack Mitigation:

Automated Generating Rules for Extended Berkeley Packet Filter

and Express Data Path,” 2019.

[5] Y. Choe, J.-S. Shin, S. Lee, and J. Kim, “eBPF/XDP Based Network

Traffic Visualization and DoS Mitigation for Intelligent Service

Protection,” in Advances in Internet, Data and Web Technologies,

Springer, 2020.

[6] F. Iglesias, D. C. Ferreira, G. Vormayr, M. Bachl, and T. Zseby,

“NTARC: A Data Model for the Systematic Review of Network

Traffic Analysis Research,” Applied Sciences, Jan. 2020.

[7] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward

Generating a New Intrusion Detection Dataset and Intrusion Traffic

Characterization,” in ICISSP, SCITEPRESS, 2018.

[8] A. Hartl, M. Bachl, J. Fabini, and T. Zseby, “Explainability and

Adversarial Robustness for RNNs,” in BigDataService 2020, IEEE,

Apr.2020.

